284 research outputs found

    The utility of a digital simulation language for ecological modeling

    Get PDF
    Dynamic modeling of ecological phenomena has been greatly facilitated by the recent development of continuous system simulator programs. This paper illustrates the application of one of these programs, S/360 Continuous System Modeling Program (S/360 CSMP), to four systems of graduated complexity. The first is a two species system, with one feeding on the other, using differential equations with constant coefficients. The second and third systems involve two competing plant species in which the coefficients of the differential equations are varying with time. The final example considers the management of a postulated buffalo herd in which the dynamics of the herd population and composition by sex and age is combined with various strategies to control its size and to optimize buffalo production

    The Critical Role of Spreading Depolarizations in Early Brain Injury: Consensus and Contention

    Get PDF
    Background: When a patient arrives in the emergency department following a stroke, a traumatic brain injury, or sudden cardiac arrest, there is no therapeutic drug available to help protect their jeopardized neurons. One crucial reason is that we have not identified the molecular mechanisms leading to electrical failure, neuronal swelling, and blood vessel constriction in newly injured gray matter. All three result from a process termed spreading depolarization (SD). Because we only partially understand SD, we lack molecular targets and biomarkers to help neurons survive after losing their blood flow and then undergoing recurrent SD. Methods: In this review, we introduce SD as a single or recurring event, generated in gray matter following lost blood flow, which compromises the Na+/K+ pump. Electrical recovery from each SD event requires so much energy that neurons often die over minutes and hours following initial injury, independent of extracellular glutamate. Results: We discuss how SD has been investigated with various pitfalls in numerous experimental preparations, how overtaxing the Na+/K+ ATPase elicits SD. Elevated K+ or glutamate are unlikely natural activators of SD. We then turn to the properties of SD itself, focusing on its initiation and propagation as well as on computer modeling. Conclusions: Finally, we summarize points of consensus and contention among the authors as well as where SD research may be heading. In an accompanying review, we critique the role of the glutamate excitotoxicity theory, how it has shaped SD research, and its questionable importance to the study of early brain injury as compared with SD theory. © 2022, The Author(s)

    An error diffusion based method to generate functionally graded cellular structures

    Get PDF
    The spatial variation of cell size in a functionally graded cellular structure is achieved using error diffusion to convert a continuous tone image into binary form. Effects of two control parameters, greyscale value and resolution on the resulting cell size measures were investigated. Variation in cell edge length was greatest for the Voronoi connection scheme, particularly at certain parameter combinations. Relationships between these parameters and cell size were identified and applied to an example, where the target was to control the minimum and maximum cell size. In both cases there was an 8% underestimation of cell area for target regions

    Questioning Glutamate Excitotoxicity in Acute Brain Damage: The Importance of Spreading Depolarization

    Get PDF
    Background: Within 2 min of severe ischemia, spreading depolarization (SD) propagates like a wave through compromised gray matter of the higher brain. More SDs arise over hours in adjacent tissue, expanding the neuronal damage. This period represents a therapeutic window to inhibit SD and so reduce impending tissue injury. Yet most neuroscientists assume that the course of early brain injury can be explained by glutamate excitotoxicity, the concept that immediate glutamate release promotes early and downstream brain injury. There are many problems with glutamate release being the unseen culprit, the most practical being that the concept has yielded zero therapeutics over the past 30 years. But the basic science is also flawed, arising from dubious foundational observations beginning in the 1950s Methods: Literature pertaining to excitotoxicity and to SD over the past 60 years is critiqued. Results: Excitotoxicity theory centers on the immediate and excessive release of glutamate with resulting neuronal hyperexcitation. This instigates poststroke cascades with subsequent secondary neuronal injury. By contrast, SD theory argues that although SD evokes some brief glutamate release, acute neuronal damage and the subsequent cascade of injury to neurons are elicited by the metabolic stress of SD, not by excessive glutamate release. The challenge we present here is to find new clinical targets based on more informed basic science. This is motivated by the continuing failure by neuroscientists and by industry to develop drugs that can reduce brain injury following ischemic stroke, traumatic brain injury, or sudden cardiac arrest. One important step is to recognize that SD plays a central role in promoting early neuronal damage. We argue that uncovering the molecular biology of SD initiation and propagation is essential because ischemic neurons are usually not acutely injured unless SD propagates through them. The role of glutamate excitotoxicity theory and how it has shaped SD research is then addressed, followed by a critique of its fading relevance to the study of brain injury. Conclusions: Spreading depolarizations better account for the acute neuronal injury arising from brain ischemia than does the early and excessive release of glutamate.Grants to RDA from the Canadian Heart & Stroke Foundation, National Science Engineering and Research Council and the New Frontiers in Research Fund, to E.F from the National Research, Development and Innovation Office of Hungary, grant no. K134377; and the EU’s Horizon 2020 research and innovation program under grant agreement No. 739593, and to JPD from the DFG (German research Council) (DFG DR323/5-1,DFG DR 323/10-1) BMBF Bundesministerium fuer Bildung und Forschung (Era-Net Neuron EBio2, with funds from BMBF 01EW2004)

    The Critical Role of Spreading Depolarizations in Early Brain Injury: Consensus and Contention

    Get PDF
    Background: When a patient arrives in the emergency department following a stroke, a traumatic brain injury, or sudden cardiac arrest, there is no therapeutic drug available to help protect their jeopardized neurons. One crucial reason is that we have not identified the molecular mechanisms leading to electrical failure, neuronal swelling, and blood vessel constriction in newly injured gray matter. All three result from a process termed spreading depolarization (SD). Because we only partially understand SD, we lack molecular targets and biomarkers to help neurons survive after losing their blood flow and then undergoing recurrent SD. Methods: In this review, we introduce SD as a single or recurring event, generated in gray matter following lost blood flow, which compromises the Na/K pump. Electrical recovery from each SD event requires so much energy that neurons often die over minutes and hours following initial injury, independent of extracellular glutamate. Results: We discuss how SD has been investigated with various pitfalls in numerous experimental preparations, how overtaxing the Na/K ATPase elicits SD. Elevated K or glutamate are unlikely natural activators of SD. We then turn to the properties of SD itself, focusing on its initiation and propagation as well as on computer modeling. Conclusions: Finally, we summarize points of consensus and contention among the authors as well as where SD research may be heading. In an accompanying review, we critique the role of the glutamate excitotoxicity theory, how it has shaped SD research, and its questionable importance to the study of early brain injury as compared with SD theory.This work was supported by grants from the Heart and Stroke Foundation of Canada and the National Science and Engineering Research Council of Canada to RDA, an NIH grant (NS106901) to CWS, a National Research, Development and Innovation Office of Hungary grant (K1343777) and EU Horizon 2020 research and innovation program (739953) to EF and from DFG Deutsche Forschungsgemeinschaft (German Research Council) (DFG DR 323/5-1), DFG DR 323/10-1, and BMBF Bundesministerium fuer Bildung und Forschung (EraNet Neuron EBio2, with funds from BMBF 01EW2004) to JPD

    The Critical Role of Spreading Depolarizations in Early Brain Injury: Consensus and Contention

    Get PDF
    Background: When a patient arrives in the emergency department following a stroke, a traumatic brain injury, or sudden cardiac arrest, there is no therapeutic drug available to help protect their jeopardized neurons. One crucial reason is that we have not identified the molecular mechanisms leading to electrical failure, neuronal swelling, and blood vessel constriction in newly injured gray matter. All three result from a process termed spreading depolarization (SD). Because we only partially understand SD, we lack molecular targets and biomarkers to help neurons survive after losing their blood flow and then undergoing recurrent SD. Methods: In this review, we introduce SD as a single or recurring event, generated in gray matter following lost blood flow, which compromises the Na+/K+ pump. Electrical recovery from each SD event requires so much energy that neurons often die over minutes and hours following initial injury, independent of extracellular glutamate. Results: We discuss how SD has been investigated with various pitfalls in numerous experimental preparations, how overtaxing the Na+/K+ ATPase elicits SD. Elevated K+ or glutamate are unlikely natural activators of SD. We then turn to the properties of SD itself, focusing on its initiation and propagation as well as on computer modeling. Conclusions: Finally, we summarize points of consensus and contention among the authors as well as where SD research may be heading. In an accompanying review, we critique the role of the glutamate excitotoxicity theory, how it has shaped SD research, and its questionable importance to the study of early brain injury as compared with SD theory. © 2022, The Author(s)

    Modeling the break-up of nano-particle clusters in aluminum- and magnesium-based metal matrix nano-composites

    Get PDF
    Aluminum- and magnesium-based metal matrix nano-composites with ceramic nano-reinforcements promise low weight with high durability and superior strength, desirable properties in aerospace, automobile, and other applications. However, nano-particle agglomerations lead to adverse effects on final properties: large-size clusters no longer act as dislocation anchors, but instead become defects; the resulting particle distribution will be uneven, leading to inconsistent properties. To prevent agglomeration and to break-up clusters, ultrasonic processing is used via an immersed sonotrode, or alternatively via electromagnetic vibration. A study of the interaction forces holding the nano-particles together shows that the choice of adhesion model significantly affects estimates of break-up force and that simple Stokes drag due to stirring is insufficient to break-up the clusters. The complex interaction of flow and co-joint particles under a high frequency external field (ultrasonic, electromagnetic) is addressed in detail using a discrete-element method code to demonstrate the effect of these fields on de-agglomeration

    Quantification and characterisation of porosity in selectively laser melted Al–Si10–Mg using x-ray computed tomography

    Get PDF
    We used X-ray computed tomography (CT), microscopy and hardness measurements to study Al–Si10–Mg produced by selective laser melting (SLM). Specimens were subject to a series of heat treatments including annealing and precipitation hardening. The specimen interiors were imaged with X-ray CT, allowing the non-destructive quantification and characterisation of pores, including their spatial distribution. The specimens had porosities less than 0.1%, but included some pores with effective cross-sectional diameters up to 260 ÎŒm. The largest pores were highly anisotropic, being flat and lying in the plane normal to the build direction. Annealing cycles caused significant coarsening of the microstructure and a reduction of the hardness from (114 ± 3) HV, in the as-built state, to (45 ± 1) HV, while precipitation hardening increased this to a final hardness of (59 ± 1) HV. The pore size and shape distributions were unaffected by the heat treatments. We demonstrate the applicability of CT measurements and quantitative defect analysis for the purposes of SLM process monitoring and refinement
    • 

    corecore